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ABSTRACT
Spoken Conversational Search (SCS) poses unique challenges
in understanding user-system interactions due to the absence
of visual cues, and the complexity of less structured dialogue.
Tackling the impacts of cognitive bias in today’s information-
rich online environment, especially when SCS becomes more
prevalent, this paper integrates insights from information sci-
ence, psychology, cognitive science, and wearable sensor tech-
nology to explore potential opportunities and challenges in
studying cognitive biases in SCS. It then outlines a framework
for experimental designs with various experiment setups to
multimodal instruments. It also analyzes data from an existing
dataset as a preliminary example to demonstrate the poten-
tial of this framework and discuss its implications for future
research. In the end, it discusses the challenges and ethical
considerations associated with implementing this approach.
This work aims to provoke new directions and discussion in
the community and enhance understanding of cognitive biases
in Spoken Conversational Search.

CCS CONCEPTS
• Human-centered computing → Empirical studies in
ubiquitous and mobile computing; • Information sys-
tems→ Users and interactive retrieval.
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1 INTRODUCTION
The rapid advancement of generative AI has been swiftly inte-
grated into our everyday systems and acted as our personal
assistants. For example, Bing Chat on search engines. This
advancement marks a transition from traditional query-list-
examine to conversational question-answering in information
searches. Although such interaction is primarily text-based
with limited access, the trend is evolving towards multimodal
capabilities in personal devices, exemplified by the partnership
between GPT-4o and Apple.1 This offers broader accessibility
through voice-based interaction, paving the way for Spoken
Conversational Search (SCS). While this advancement can ben-
efit various groups with limited access (e.g., visually impaired)
[33] and those in situations where reading isn’t feasible (e.g.,
driving or exercising) [80], delivering user-friendly yet rele-
vant responses remains a challenge, especially due to limita-
tions in cognition (in processing, analyzing, and interpreting
information) and that of the voice channel itself [77, 115, 122].
Search engines act as intermediaries of knowledge making it
crucial for such systems to curate relevant yet diverse content
to foster balanced viewpoints (avoid “echo chambers” [8]) and
overcome cognitive limitations and biases.2

However, screen-basedweb search benefits fromwell-defined
tools and standard protocols to visualize and study bias behav-
iors, such as eye-tracking [17, 22, 42, 129] and click-through
1OpenAI and Apple announce partnership to integrate ChatGPT into Apple
experiences. Retrieved 10 June, 2024 from https://openai.com/index/openai-and-
apple-announce-partnership/
2For instance, researchers have already raised concerns about biases in person-
alized informatics [124], or Conversational Search [100].
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logs [26, 59, 106]. Such methodologies are not established for
SCS, which calls for instruments, methodology, and protocols
that go beyond the visual paradigm [35]. Regarding this, our
contributions in this position paper are three-fold: (i) discuss
the applicability of behavior analysis tools used for web search
to SCS and identify research opportunities for exploring cog-
nitive biases in SCS, (ii) propose approaches to design experi-
ments, from setup formats to measurements, with preliminary
results demonstrating the potential of using multimodal phys-
iological signals as a voice channel equivalent to eye-tracking
in web search, (iii) outline challenges with suggestions and
ethical considerations for adopting our approach to achieve
accurate and representative results from multimodal signals.

2 BACKGROUND
2.1 Spoken Conversational Search
Conversational information seeking (CIS), the process of ob-
taining information through conversations (text, audio/voice,
or multi-modal), is a fast-developing research area [91, 128].
CIS supports users to search for information through natural
language. It enables users to ask questions, refine their ques-
tions, ask follow-up questions, or provide relevant feedback
in a natural manner. The interaction of such systems could
either be single-turn or multi-turn. In contrast to a single-turn,
a multi-turn setting typically maintains the conversational
context (e.g., co-reference resolution)3 in a back-and-forth in-
formation exchange with the user [128]. Some advantages of
multi-turn CIS include alleviating the cognitive burden on the
user by breaking down the information, assisting with infor-
mation need formulation, or providing highly personalized
information for a given context [113]. While context manage-
ment may be relatively trivial for a CIS system, users also have
to perform context management subconsciously. This would
require significant cognitive effort from the user, particularly
when the conversation gets longer, and the task gets more
complex. This paper focuses on SCS, a type of CIS, where
communication between the user and system is entirely medi-
ated verbally through audio [109]. Visual CIS interfaces often
use screen-based cues like boldfacing important sections of
text [20], or attributing sources within the responses of text-
based CIS [61], large language model (LLM) based conversa-
tional agents [11, 62, 99]. These cues aid users in effortlessly
finding information. However, in linear channels like SCS,
users may struggle to keep up with presented information, due
to limited cognitive capacity and audio features (e.g., prosody)
that can affect their understanding [20].

2.2 Cognitive Biases in Information Seeking
Cognitive biases “are systematic errors in judgment and nat-
urally occurring tendencies that skew information processes,
due to limitations in cognitive, motivational, or environmental
factors, which lead to sub-optimal or fundamentally wrong
outcomes” [121]. It is based on the cognitive load theory [107]

3By “context”, we mean the information exchanged during the conversation
necessary to interpret the users’ response, e.g., the history, preferences, and so
on.

that humans have limited cognitive capacity, so they tend to
favor mental shortcuts of other judgments (e.g., system rank-
ing, or crowd opinions) [8, 104]. Information seekers often
rely on perceived trustworthiness when accessing information,
constructing mental models to link various pieces of infor-
mation [59]. This process may influenced by cognitive biases
[8]. In particular, the information cherry-picking will likely be
affected by the order (rank) (Order Effect), imbalanced view-
points (Exposure Effect), a prior judgment (Confirmation Bias),
the first piece of information (Anchoring Bias) or Misinfor-
mation [18, 59, 82, 104]. This can lead to uncritical support
for partisans, reinforce stereotypes, and spread misinforma-
tion [8, 21, 59]. Conversely, it can also help users effectively
navigate overwhelming information. Therefore, the impacts
of these biases must be studied to provide accurate in situ
information in SCS. Common methods for measuring cog-
nitive bias in web search include web-logging metrics like
sentiment analysis, dwell time, clicks [26, 30, 59, 106], and
eye-tracking [17, 22, 42, 129].

However, there is a lack of research on biases in voice-based
systems. Eye-tracking is unavailable on these systems, and web
logging has limitations in providing granular data [21, 106]. Ad-
ditionally, recent work found inconsistent results using NASA-
TLX for mental load [37], suggesting traditional self-reports
may be unreliable. These emphasize the need for fine-grained
data, such as physiological data from wearable technology.

2.3 Neural Activities for Cognitive Bias
The human brain is divided into several regions in charge of
different functionalities. For example, the frontal lobe handles
decision-making, motivation, and focus, while the temporal
lobe is responsible for auditory and language processing [66].
Investigating how neural activities traveled across regions
provides a window look into the flow and processing of in-
formation within the brain [64, 71]. For example, researchers
have measured the workload change in web browsing [47]
and understood search intentions [75, 76] or keyword rele-
vance [123]. Listening effort refers to the cognitive resources
people spend on listening [34, 89]. The audio information is
first stored as a “buffer” in workingmemory, then processed for
comprehension, and then potentially stored in long-term mem-
ory [89, 93]. During this process, information that is discrepant
with the current mental model or perceived as irrelevant will
not be [93], or requires more effort [94] to interpret further.
Compared to visually impaired individuals, sighted users gen-
erally have a diminished ability to understand and interpret
audio information [16] as evidenced by increased cognitive
effort in audio-only scenarios [97]. This heightened effort may
hinder their capacity for reasoning and critical thinking, that
is essential for mitigating cognitive bias [8]. By understanding
such cognitive activities involved, we can understand if users
encounter bias - e.g., if information only reaches language
regions or proceeds to memory retrieval.For instance, users
expend more cognitive effort and attention when assessing
information aligned with their beliefs [74]. Additionally, ini-
tial judgments during utterances can shape final decisions on
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a voice’s believability [46].These results suggest a hypothe-
sized process where language regions activate first, followed
by comprehension and working memory assessment. If the in-
formation is deemed irrelevant or dissident, it will be discarded
without further processing across brain regions, leading to bi-
ased decisions [71]. Advances in wearable devices have enabled
physiological sensing to detect cognitive bias in web searches,
relying on grounded theories (e.g.,cognitive load theory [107],
orienting responses [103], cognitive dissonance [28, 90], and
dual-thinking system theory [24]). Multi-modal data are dis-
cussed later in Section 5.1.

3 RESEARCH OPPORTUNITIES
Exploring cognitive biases in SCS offers research avenues, such
as characterizing search stages, understanding user behavior,
and developing bias detection or mitigation approaches.

How to Characterize Cognitive Bias at the Different
Stages of the SCS Process? Cognitive bias may occur at
each stage of a visual-based search process [8], i.e., querying,
consuming the search results, and judging relevance and sat-
isfaction. Previous work suggests variations in search stages
or actions [67] (e.g., query formulation/reformulation, results
scanning, selection, and assessment) and user behaviors be-
tween screen and audio-only channels [113]. Similarly, cog-
nitive biases manifest differently in these search stages for
screen and audio-only channels [50]. For instance, users can
review and refer back to their query more easily on screens
than with voice queries [96]. In SCS, queries are often in nat-
ural language [23, 40], and the arrangement of words may
reveal user intent [102] and perhaps even reveal any underly-
ing biases. For instance, a user’s choice of query formulation
between, “Why is renewable energy inefficient?” and “What
are the efficiencies of renewable energy?” may indicate pre-
conceived beliefs, potentially leading to biased search results.
Furthermore, detecting cognitive biases in the query stage
can be complicated by users’ false memories(misremembered
attributes of searched items), as they may not easily accept
misremembering [52]. To this end, we highlight the signifi-
cance of investigating cognitive processes at various stages
of SCS interaction (e.g., detecting false memories at the query
stage).

What Is the Role of Clarifying Questions in SCS? How
Is It Related to Cognitive Bias? In CIS, the dialogic na-
ture makes query reformulation and clarifying questions more
critical and frequent, supporting conversational actions [3,
112, 128]. Users often iteratively refine queries by referring
to previous responses to narrow down or expand their initial
query [128]. Cognitive biases may influence this iterative pro-
cess. For example, if the information aligns with users’ beliefs
they may accept it without further questioning. Conversely,
if it opposes their beliefs, they may reformulate the query to
find results that align with their expectations. This means that
considering a user’s reformulation/clarifying questions can
help to detect potential bias. Consequently, presenting strate-
gies for clarifying options becomes as important as providing
relevant responses in SCS. Different presentation strategies

may affect user satisfaction and their arrangement and format
may reinforce certain types of biases (e.g., confirmation bias).
this is a research challenge that has not been explored in SCS.

Can Voice Modulation Be Used to Characterize Cog-
nitive Bias? While eye-tracking is not feasible in voice inter-
actions, audio attributes (e.g., pitch and speed) from both the
system and user reveal information about motivations, emo-
tions, and personal traits [58]. For instance, Jiang et al. [46]
indicated that perceived information believability is affected
by the confidence in the voice of the system. Additionally, a
recent work, found higher trust in female-voice agents that
higher pitch reduces participants’ decision-making reliance on
the provided information [38]. These examples illustrate how
voice modulation in systems affects information perception.
Currently, we lack understanding of how system voice mod-
ulations might influence user beliefs or reinforce biases like
confirmation bias, presenting an open research challenge. One
potential solution is to slow down the system when discussing
controversial opinions, allowing users ample time to absorb
and consider. Besides, an important direction is the relation-
ship between biases and user voice modulation. For instance,
a skeptical tone and higher pitch when querying, “Is climate
change REALLY [accentuate] happening?” may indicate con-
firmation bias towards the belief that climate change is not a
real issue.

How to Leverage Content Manipulation to Mitigate
Harms of Cognitive Bias? Cognitive bias does not always
have a negative effect [69]. While it can skew perceptions
and decisions, it also helps balance perspectives [53]. For in-
stance, Availability Bias refers to placing greater importance
on readily available or easily recalled information. A way to
counteract it is by presenting less readily available information
first. However, this solution may raise concerns about group
fairness and misinformation spread. Recognizing and under-
standing the impact of cognitive bias helps address potential
pitfalls and leverage its potential to create effective and user-
friendly search experiences. Furthermore, audio interventions
in voice-based conversations (e.g., nudging for clarifying ques-
tions [37], or warning users of presence of misinformation in
a voice-based setting [19]) offer a potential solution to inform
users of potential biases in SCS.

4 CASE STUDY: ARGUMENT SEARCH
Expanding on our identified research opportunities, we intro-
duce a SCS specific use case called Spoken Conversational
Argumentative Search (SCAS) and discuss its implications,
data, topics, and methodology for experimentation (see Sec-
tion 5). SCAS systems respond to a user’s spoken query on
controversial topics with multiple argument stances or view-
points (i.e., PRO and CON). Users can rely on SCAS to provide
them with balanced arguments on topics of interest. Let us
consider an example in which, a user asks “is universal basic
income good for society?”. If the system only provides one
side (i.e., PRO) of the issue, the user tends to be blind-sided
by not having any information about other perspectives [36].
Such a biased exposure of perspectives is an important open
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challenge [85] if left unaddressed, may negatively impact soci-
ety [12, 26, 114, 126]. Biases can arise from data itself as much
as they can from algorithms [86] and presentation strategy
in voice-only settings. Hence, choosing appropriate data is
crucial when studying cognitive biases in SCS to control for
unknown effects (from the data).

Data. For our specific case study, designing experiments
requires argumentative topics (e.g., “should zoos exist?”) and
documents/passages supporting (PRO) and opposing (CON)
the topics. A crowdsourced study by Draws et al. [26] col-
lected opinions from 100 participants on 18 topics from the
ProCon.org debate portal4; only a few topics identified with
mild pre-existing viewpoints. Incorporating these topics into
future experiments on cognitive bias is crucial to avoid heavily
polarized subjects and better detect the effects of cognitive
bias. The current dataset, with only 280 search results, may be
insufficient for longer conversations. Therefore, we propose
expanding the collection with the args.me corpus [2], which
not only includes arguments with stances (PRO or CON) but
also offers additional granularity by providing sub-topical per-
spectives (e.g., Capitalism, Healthcare, and Poverty) for each
document. This increased granularity will also aid in mitigat-
ing unknown effects in future experiments.

5 METHODOLOGY
This section outlines an experimental framework for study-
ing cognitive biases in SCS, covering potential experimental
setups and data collection, including behavioral and physio-
logical data. Additionally, we showcase preliminary results
from an information-seeking experiment as an example of
this approach and the potential of physiological data. The less
structured nature of conversational interactions and the lack
of clear indicators of comprehension or focus, i.e., listening
effort (see Section 2.3), make it challenging to identify and
measure specific biases in SCS. This section outlines an exper-
imental framework for studying cognitive biases in SCS, in-
cluding possible setups and measurements. Table 2 categorizes
applicable measurements into Behavioral and Physiological
Responses. It also showcases preliminary results as an exam-
ple of this approach and the potential of physiological data.
To accommodate the various needs of research questions and
their associated experiments, including feasibility, scalability,
research method (qualitative, quantitative, mixed), Table 1 cov-
ers potential experiment set-ups, including their advantages
and disadvantages.

5.1 Measurements
Behavioral Responses. In SCS, natural language utterances
function as queries [96] and the Voice modulation (see Sec-
tion 3) of these raised queries distinguishes it from traditional
screen-based search. In a case of rectifying system errors5,
users typically adjust volume, rephrase commands, or change
pronunciation [120]. When the system’s response contradicts
4https://www.procon.org/debate-topics/ [Accessed: 9 Feb 2024]
5A system error occurs when the system fails to provide users with the desired
results, regardless of whether it is caused by an incorrect response or lack of a
response.

their beliefs, users, especially those less tech-savvy, might
confuse cognitive biases with system errors. They may then
try familiar methods used for system errors to get preferred
outcomes, potentially introducing bias. Speaking of querying,
users’ listening habits can also be used to investigate biases
in SCS. Listening effort or speech intelligibility is assessed by
the recalled accuracy, as indicators of attention and language-
related cognitive processing [93], in recall/recognition tasks
like word/sentence recognition and sentence comprehension
[16]. This may also reveal biases, as users often comprehend bi-
ased information more easily due to lower cognitive load [10],
but it still lacks granularity. It is worth noting that confounding
variables like language proficiency [51] and working memory
capacity [32, 89] can also impact listening performance [16]
potentially introducing biases in information comprehension.
A potential solution to address these pitfalls is adapting Brief-
IAT [105] – a version of the Implicit Association Test (IAT)
[39] designed to assess bias [25] . However, implementing a
reliable bias assessment in the SCS remains an open challenge
and requires more attention from the community.

Physiological Responses. Cognitive bias can be mea-
sured by examining differences in cognitive processes, emo-
tions, and engagement. For instance, a user may be more en-
gaged and emotionally aroused at the end of an audio seg-
ment. Multi-modal sensing with wearables can capture these
responses, offering a scalable and comprehensive way to ‘visu-
alize’ cognitive bias in SCS, analogous to using eye-tracking
for screen-based IR systems. Electroencephalography (EEG)
gathers brain electrical activity, aiding in studying cognitive
and emotional processes such as memory, attention, and re-
sponses to stimuli [15, 55, 64]. EEG has shown promising re-
sults in web search, detecting relevance judgment at both ar-
ticle level [4, 41] and word level [123], and identifying infor-
mation needs in Q&A scenarios [70]. Two common ways EEG
signals are analysed [73] are Event-Related Potentials (ERP)
and Frequency Band Analysis. ERP is a time-locked analy-
sis describing cognitive activity after an event’s onset [64].
Typically analyzing signals within a short time window (e.g.,
1 second) [31, 70, 123], which may potentially help with de-
tecting biases in each turn of a conversation in SCS. On the
other hand, Frequency Band Analysis is typically used with
longer stimuli durations (e.g., 1 minute) and can potentially
help explore biases at the whole session level, rather than just
per turn of the conversation. The latter explores various wave
frequencies linked to cognitive states (e.g., alpha for atten-
tion [71, 74], theta for memory [72], beta for active thinking
engagement [125]) [55]. The works above focus on brain waves
in the frontal cortex related to human attention, memory, de-
coding, and retrieval. While they were explored in a screen-
based IR context, we emphasize their potential in SCS as well,
to explore cognitive biases. With current wearable EEG de-
vices (e.g., headbands [78] and earbuds [29]) being integrated
ubiquitously into earphones [1, 7], we foresee opportunities to
expand research on biases in SCS through crowdsourced stud-
ies, thus lowering barriers for many researchers. Additionally,
peripheral signals from commercial wearables, such as Elec-
trodermal Activity (EDA), Photoplethysmography (PPG), and

https://www.procon.org/debate-topics/
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Table 1: A breakdown of different experiment set-ups (i.e., Lab, Field, and Crowdsourced) in 𝑆𝐶𝑆 . LLM: large language
model

Features Lab Study Field Study Crowdsourced Study

Control High Low; unobserved factors in real-world Moderate; depends on the design of platform or task

Data Qual-
ity

High and detailed; due to
highly controlled and optimal
environment

Low; real-world noise and factors may affect
data

Moderate; less controlled than lab studies.

Scalability Low; requires physical atten-
dance on both participants
and researchers

Moderate; enables more participants than lab
studies but still limited

High; enables larger participant pool from diverse locations.
LLM applications like Retrieval Augmented Generation
(RAG) [61] show potential for controlled studies [83, 87]

Ecological
Validity

Low; the artificial setting may
influence behavior

High; since participants are in natural environ-
ments

Moderate; the absence of a physical entity (e.g., smart
speaker) may influence user information perception [57]

Setup Wizard of Oz (WOZ) [27, 111,
116]

Participants are provided with pre-configured
voice agents and wearable devices to take
home [120]. Comfortable and portable devices
may facilitate longitudinal studies.

Crowdsourcing platforms like Prolific enable simulating
always-on voice assistants for hypothetical scenarios. Con-
sumer products like Apple AirPods with EEG [7] will make
crowdsourced studies more feasible.

Related
Works

[13, 45, 79, 109, 111, 113] [118–120] [43, 108]

Table 2: A Breakdown of studied measures by data type (Behavioral vs. Physiological) and user interaction mode
(screen-based vs. voice). Bold text highlights studies on cognitive biases, emphasizing the limited research on cognitive
biases in voice search (i.e., SCS).

Data Type Screen-based Voice

Construct Related Work Construct Related Work

B
eh

av
io
ra
l

Web-logging (e.g., dwell time, clicks) Cognitive Bias [26, 59, 106] –

Transcripts & Voice Modulation (e.g., pitch, speed) – Perceived Trust [38, 63]

Task Performance (e.g., sentiments of
query/utterance, recall rate)

Cognitive Bias [30] Listening Effort [16, 49, 51, 89, 97]
Search Experience [68, 98] Search Experience [49, 98]

Motion, Facial Expression, Gaze – Engagement [81, 84, 84]

Ph
ys
io
lo
gi
ca
l Brain Signals (e.g., EEG)

Cognitive Workload [47, 72] Perceived Trust [46]
Search Experience [4, 41, 70, 75, 123]
Cognitive Bias [10, 71, 74, 125]

Peripheral Sensing (e.g., EDA, PPG) Cognitive Bias [14, 71, 90] –

Pupillary Responses Selective Attention [41, 93]
Selective Attention [93]
Distraction [65]
Listening Effort [89]

Skin Temperature (SKT), can complement EEG [6, 15]. EDA
measures the variations in skin’s electrical conductance driven
by sweat gland activity. PPG uses light to measure blood vol-
ume changes and to derive heart rate, blood oxygen levels,
and other related metrics. SKT reflects the balance between
the body’s heat production and heat loss. These data indicate
emotional responses from different aspects. For example, high
arousal triggered by stressful events, often increase perspira-
tion (sweating), leading to elevated EDA levels [9, 15, 54], or
a rapid increase in heart rate (manifests as shorter intervals
between PPG peaks [15, 54, 88]). Besides, EDA decreases when
individuals are highly engaged (and thus less aroused) [54]
and SKT generally decreases in low valence [54]. Furthermore,
pupillary responses have been used to investigate selective
attention [93], auditory distraction [65], and listening efforts
[89]. For voice interaction, wearable eye-tracking glasses, e.g.,

Pupil Labs Neon glasses [56], can provide such a channel. How-
ever, pupil data is most suitable for lab studies with consistent
lighting.

5.2 Preliminary Results
We used the EEG and EDA data collected by Ji et al. [44] for
illustration purposes.6 They collected various physiological
signals from wearable devices in a lab study with simulated in-
formation search settings. Each participant completed a search
task and rated the perceived difficulty in understanding the
provided information on 12 topics. We analyzed data from
7 participants who received search results in audio formats
on both most 𝑒𝑎𝑠𝑦 (𝜇 1.3/5.0) and ℎ𝑎𝑟𝑑 (𝜇 3.0/5.0) topics (ac-
cording to self-ratings). Although bias was not the target ma-
nipulation, the difficulty reveals changes in cognitive efforts
6EEG are cleaned following Eugster et al. [31], divided into 3sec segments. EDA
are cleaned, baseline-corrected following Bota et al. [15], aggregated with a 1sec
window.
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Figure 1: Preliminary EEG (left) and EDA (right) results (𝑁 = 7) of grand average on listening to search results (about 1
minute) on self-rated 𝑒𝑎𝑠𝑦 (Antarctica exploration – R03.353) and ℎ𝑎𝑟𝑑 topics (Freighter ship registration – T04.743).
In the left figure, deeper colors indicate greater neural activity. Cool colors (negative voltage) represent inhibitory,
i.e., suppressing or restricting neural responses, while warm colors (positive) represent excitatory, i.e., promoting or
enhancing responses [64]. The dots represent the placement of 14 electrodes.

required to receive the information. Figure 1 demonstrates
clear differences between the 𝑒𝑎𝑠𝑦 and ℎ𝑎𝑟𝑑 topics in both
results. Overall, there was less neural activation on 𝑒𝑎𝑠𝑦. In-
creased positive voltages around 1.75s in most regions suggest
focused attention and engagement. Meanwhile, the left tem-
poral negative may indicate reallocating cognitive resources
from auditory processing to other areas needing more pro-
cessing power. On ℎ𝑎𝑟𝑑 , heightened activation was observed
early at 0.75s. Pronounced prefrontal/frontal peaks suggest
deeper processing and working memory load related to un-
derstanding the information. Enhanced activation at temporal
regions, which handles the auditory and language processing,
indicates increased comprehension effort and knowledge recall.
EDA exhibits more consistency on 𝑒𝑎𝑠𝑦, while much greater
variability and fluctuation on ℎ𝑎𝑟𝑑 . This suggests increased
arousal or stress when absorbing difficult information in the
audio. In summary, these preliminary results suggest that ob-
serving users’ auditory information consumption is viable and
warrants further exploration. Multi-modal signals may offer
insights into fast and slow thinking systems [24, 48], and com-
bining behavioral data with wearable signals could accurately
identify user behavior, preferences and biases in SCS.

6 LESSONS LEARNED & ETHICAL
CONSIDERATIONS

SCS interactions are less structured than screen-based inter-
actions, which complicates analysis. Physiological data show
distinct changes in receiving audio search results but interpret-
ing cognitive biases is still complex. To ensure collect reliable
data, these factors should be considered when designing the
experiment: (i) data with more channels (e.g., 14+ channel
EEG) offers direct insights but involves noise and requires
specialized designs and expertise, while with fewer channels
(e.g., peripherals) is easier to analyze, (ii) longer activities pro-
vide more reliable data, but SCS often involves short tasks,
(iii) confounding variables like fatigue, interest, health, and
specific activities (e.g., speech) may significantly impact. It
is important to ensure optimal contact between sensors with

specific body areas (e.g., see [9]). Furthermore, given biases
are abstract concepts, the related hypotheses should be decon-
structed into specific constructs, like engagement or cognitive
load, and further into direct indicators that are measurable,
reliable, and objective [95, 117], such as skin conductance or
reaction time. During analysis, the requirements of signal pro-
cessing on frequency can make certain features unavailable
or distorted, especially those associated with high frequency
in PPG [88]. Besides, analyzing SCS transcripts requires ex-
tensive effort and qualitative approaches as demonstrated in
earlier works (see [110, 113]). For ethical considerations, it
is crucial that informed consent and participant awareness of
the exposure levels as physiological data could compromise
privacy by revealing thoughts and emotions [127]. For exam-
ple, the protocol used by Arnau-González et al. [5] could be
adopted in this case. To protect cognitive liberty [92], caution
is essential when developing strategies to mitigate biases using
multi-modal signals for real-time content manipulation. It is
also crucial to account for individual variations (e.g., minority
groups, neurological conditions) for accurate and representa-
tive results [101].

Authors’ Positionality. This paper reflects the perspectives
shaped by the interdisciplinary backgrounds and views of our
author team, which includes computer science researchers in
information retrieval, conversational search, human-computer
interaction, and pervasive computing. Some of the authors
have significantly influenced these perspectives from their
work on exploring cognitive bias in screen- or voice-based
search, and personal experience as members of the neurodi-
verse community. The authors acknowledge the complexities
surrounding cognitive biases. This paper aims to support a
comprehensive discussion on understanding and utilizing bi-
ases in SCS. We acknowledge the gap in including perspectives
from minority groups, First Nations peoples [60, 126], or peo-
ple with disabilities.
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7 CONCLUSIONS
Drawing insights from information-seeking, psychology, cog-
nitive science, and wearable sensors, this paper highlights the
under-explored area of cognitive biases in sophisticated voice-
only systems like SCS, and advocates further research. We
argue that traditional web search instruments are insufficient
for studying cognitive biases and envision further research
opportunities. Furthermore, we propose a general experimen-
tal approach for studying cognitive biases in SCS and report
preliminary results demonstrating the feasibility and signifi-
cance of using physiological responses. Additionally, we dis-
cuss the challenges and ethical considerations in adopting this
approach.
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